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Abstract
We propose a generalized model for the famous uniform recursive tree (URT)
by introducing an imperfect growth process, which may generate disconnected
components (clusters). The model undergoes an interesting phase transition
from a singly connected network to a graph consisting of fully isolated
nodes. We investigate the distributions of degree and component sizes by
both theoretical predictions and numerical simulations. For the nontrivial
cases, we show that the network has an exponential degree distribution while
its component size distribution follows a power law, both of which are related
to the imperfect growth process. We also predict the growth dynamics of the
individual components. All analytical solutions are successfully contrasted
with computer simulations.

PACS numbers: 89.75.Hc, 36.40.Qv, 02.50.Ey

1. Introduction

Degree distribution and component (cluster) size distribution are two important properties [1]
of complex networks, which have become a focus of attention for the scientific community
[2–5]. It has been established that degree distribution has an important consequence on other
structural characteristics of networks [1], such as average path length, clustering coefficient,
betweenness centrality and others. Particularly, degree distribution also has profound effects
on almost all aspects of dynamic processes taking place on networks, including robustness
[6, 7], percolation [8–10], synchronization [11], games [12], epidemic spreading [13–16], etc.
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On the other hand, as a fundamental structural feature of networks, component (especially the
giant component) size is one of the most significant measures of the network robustness
[6–10]; in particular, component size distribution is directly related to many significant
practical issues such as the distribution of the sizes of disease outbreaks for disease propagation
on contact networks [17–19].

A wide variety of network models have been proposed to describe real-life systems and
study their structural properties [2–5], among which the uniform recursive tree (URT) is
perhaps one of the earliest and most widely studied simplest models [20]. The URT is now
acknowledged as one of the two principal models [21] of a random graph (the second one is
the Erdös–Rényi (ER) model [22]). It is a growing tree constructed as follows: start with a
single node, at each increment of time let a new node be added to the network linked to a
randomly selected preexisting node. It has found applications in several areas. For example, it
has been suggested as a model for the spread of epidemics [23], the family trees of preserved
copies of ancient or medieval texts [24], chain letter and pyramid schemes [25], to name but a
few.

Most previous models belong to idealized models [2–5], although they may provide
valuable insight into reality. In fact, real-world systems may be viewed as imperfect
realizations of idealized theoretical models [26], which have significant influences on their
features and function. For instance, introducing defects (impurities) into magnetic materials
may drastically change their properties [27]. Recently, many authors have focused on
investigating the influence of deleting nodes (or edges) on the function of networks such
as their integrity and communication ability [6, 10, 28].

In this paper, we present a generalized model of the URT by introducing an imperfect
growth process which may generate disconnected components. The proposed model is
governed by a tunable parameter q. We study both analytically and numerically the
interesting characteristic aspects of the models, focusing on degree distribution, component
size distribution, as well as the evolving dynamics of individual components. We show
that both distributions can be computed accurately, although calculation of component
size distribution seems difficult for previously studied models. The obtained results
indicate that the imperfect growth process affects fundamentally the structure of the
network.

2. The model

The proposed generalized model with an imperfection growth process is generated in the
following way. We start from an initial state (t = 0) of one isolated node. Then, at each
increment of time, a new node is added, whose behavior of growth dynamics depends on
a parameter q. With probability q, the new node keeps isolated; and with complementary
probability 1 − q, the newly introduced node connects a randomly chosen old node. This
growing process is repeated until the network reaches the desired size. One can easily see
that at time t, the network consists of t + 1 nodes and expected (1 − q)t edges. Thus,
when t is large, the average node degree at time t is approximately equal to a constant
value 2(1 − q).

There are two limiting cases of the present model with the URT as one of its particular
case. Therefore, we call the presented model the ‘generalized uniform recursive tree’. For
q = 0, the model coincides with the uniform recursive tree which is a singly connected
network. When q = 1, the network is reduced to a fully disconnected network. Thus, varying
q in the interval (0,1) allows the formation of disconnected clusters as part of the growing
dynamics.
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3. Distributions of degree and component sizes

Below we will show that some interesting characteristics (i.e., degree distribution, component
size distribution and evolutionary dynamics of individual components) may be investigated
analytically, which depend on the parameter q, i.e., the imperfect growth process.

3.1. Degree distribution

First we focus on the degree distribution. For q = 1, all nodes have the same number of
connections 0, the network exhibits a completely homogeneous degree distribution. For the
case of 0 � q < 1, we can address the degree distribution using the master-equation approach
[29]. For simplicity, we label nodes by their time of birth, so that node s refers to the node
introduced at time s, and use p(k, s, t) to denote the probability that at time t the node s has
a degree k. Then we may analyze the dynamics through a set of master equations [29–31]
governing the evolution of the degree distribution of an individual node, which are of the
following form:

p(k, s, t + 1) = 1 − q

t + 1
p(k − 1, s, t) +

(
1 − 1 − q

t + 1

)
p(k, s, t) + qδk,0 + (1 − q)δk,1 (1)

with the initial condition, p(k, s = 0, t = 0) = δk,0. This accounts for two possibilities for a
node: first, with probability 1−q

t+1 , it may get an extra edge from the new node, and thus increase

its own degree by 1 and, second, with the complimentary probability 1 − 1−q

t+1 , the node may
remain in the former state with the former degree.

Based on equation (1), one can obtain the total degree distribution Pt(k) specifying the
probability that a randomly chosen node has degree k at time t:

Pt(k) = 1

t + 1

t∑
s=0

p(k, s, t). (2)

Summing up both sides of equation (1) over s, we get the following master equation for the
degree distribution:

(t + 2)Pt+1(k) − (t + 1)Pt (k) = (1 − q)Pt (k − 1) − (1 − q)Pt (k) + qδk,0 + (1 − q)δk,1. (3)

In the infinite t limit, each Pt(k) converges to some limit P(k). Then, the corresponding
stationary equation takes the form

(2 − q)P (k) − (1 − q)P (k − 1) = qδk,0 + (1 − q)δk,1. (4)

It has the solution of an exponential form

P(k) =

⎧⎪⎪⎨
⎪⎪⎩

q

2 − q
, k = 0,

2

2 − q

(
1 − q

2 − q

)k

, k � 1.

(5)

For q = 0, P (k) = 2−k which is exactly the same degree distribution of the uniform recursive
tree [3]. Note that this degree distribution P(k) = 2−k is also shared by the Yule tree [32].
There is one major difference between the URT and Yule tree: the former is small-world [33],
while the latter lacks this property [32].

In order to confirm the validity of the obtained analytical prediction of degree distribution,
we have performed extensive numerical simulations of the networks. In figure 1, we report
the simulation results of the degree distribution for several values of q, from which we can
see that the degree distribution decays exponentially with the degree, in agreement with the
analytical results.
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Figure 1. Semilogarithmic graph of degree distribution of the networks with order N = 200 000.
Each point is an average over 10 independent simulations. The solid lines are the analytic
calculation values given by equation (5).

3.2. Component size distribution

Next, we show that the distribution of component sizes follows a power law with exponent
determined by parameter q. For the case of q = 0, there is only one component in the network,
and the component size distribution is trivial. For q = 1, there are t + 1 components, every
node belongs to a component of size 1 (the node itself). In the range 0 < q < 1, the imperfect
growth process allows the formation of multiple disconnected components. For this case, we
can derive an analytical expression for the component size distribution using the rate-equation
method [34].

Initially (t = 0), there is only one component in the network. At each subsequent step,
a new cluster is created with probability q. Thus, after t step evolution, there are expected
N(c, t) = tq + 1 components in the network, and the average value of component sizes is
asymptotically equal to 1

q
for large t. Let Nc(t) denote the average number of components

with size c at time t. By the very construction of the generalized uniform recursive tree, when
a new node enters the network, the rate equations [34–37] that account for the evolution of
Nc(t) with time t are

dNc(t)

dt
= (1 − q)

(c − 1)Nc−1(t) − cNc(t)∑
c′ c′Nc′(t)

+ qδc,1. (6)

Here the first term on the right-hand side of equation (6) accounts for the process in which the
new node is connected to one node in a cluster with size c − 1, leading to a gain in the number
of components with size c. Since there are Nc−1(t) components of size c − 1 and the new
node creates a new edge with probability 1 − q, such processes occur at a rate proportional
to (1 − q)(c − 1)Nc−1(t), while the factor

∑
c′ c′Nc′(t) converts this rate into a normalized

probability. The second (loss) term describes the new edge connecting to one of the nodes in a
cluster with size c turning it into a component with size c + 1. The last term on the right-hand
side of equation (6) accounts for the continuous introduction of a new component with size 1
(the isolated new node itself).
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Figure 2. Double-logarithmic plot of the component size distribution of the networks with 200 000
nodes each. The points are the results of computer simulations, and each point is obtained by 20
independent network realizations. The solid lines correspond to the analytic solution provided by
equation (8).

Let P(c) be the component size distribution that is the probability of a randomly
chosen cluster having size c. In the asymptotic limit Nc(t) = N(c, t)P (c) � tqP (c) and∑

c′ c′Nc′(t) = t + 1. Inserting these into equation (6), we have the following recursive
equation:

P(c) =

⎧⎪⎪⎨
⎪⎪⎩

c − 1

c + 1
1−q

P (c − 1), c > 1,

1

2 − q
, c = 1,

(7)

giving

P(c) = 1

2 − q

c∏
m=2

m − 1

m + 1
1−q

= 1

2 − q

�(c)�
(
2 + 1

1−q

)
�

(
c + 1 + 1

1−q

) (8)

for c > 1. Thus, in the infinite c limit

P(c) ∼ c
−(1+ 1

1−q
)
, (9)

which shows that component size distribution follows a power-law form with an exponent
γc = 1 + 1

1−q
dependent on parameter q.

We have performed extensive numerical simulations for the full range of q between 0 and
1. In figure 2, we plot the component size distribution P(c) as a function of q, which agrees
well with the analytic result.

3.3. Evolving dynamics of component sizes

In addition to component size distribution, using the continuum approach [38] we can calculate
the time dependence of component size ci of a given component i, i = 1, 2, . . . , N(c, t). The
size will increase by 1 every time a new node is added to the system and linked to one of the
nodes belonging to this component. Assuming that ci is a continuous real variable, according
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Figure 3. Double-logarithmic graph showing the time-evolution for the sizes of two components.
Here q = 0.2, and the dashed line has slope 0.8, as predicted by equation (11).

to the generating algorithm of the model, the rate at which ci changes is clearly proportional
to ci itself. Consequently, ci satisfies the dynamical equation [38, 39]

∂ci(t)

∂t
= (1 − q)

ci(t)

t
. (10)

The solution of this equation, with the initial condition that component i was born at time ti
with size ci(ti) = 1, is

ci(t) =
(

t

ti

)1−q

. (11)

Equation (11) shows that the size of all components evolves the same way, following a power
law, the only difference being the intercept of this power law, see figure 3.

4. Conclusion and discussion

To conclude, by introducing an imperfect network growth process we have proposed an
extended model for the uniform recursive tree. The presented model interpolates between a
network with fully disconnected clusters and the uniform recursive tree with only one single
component, which allows us to explore the crossover between the two limiting cases. We
have provided both analytically and numerically the solutions for degree and component size
distributions of our model. We found that in the case of 0 < q < 1 the model exhibits
an exponential degree distribution and a power-law component size distribution. We also
presented that the size of all components evolves as a power-law function of time t.

Our model has a remarkable character that some nodes may become disconnected from
the rest of the network. This property has been less reported in earlier studied models and
thus has not yet been paid enough attention. Actually, our model may be further extended to
include initial attractiveness [29] and preferential attachment [40]. That is, all nodes are born
with some initial attractiveness A > 0. In the growth progress, the probability that an old node
will receive a link from the new node is proportional to the sum of the initial attractiveness
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and its degree. In this more general case, the degree distribution is power law with exponent
dependent on A, while the component size distribution is the same as that of the present model
addressed here and is independent of parameter A.

In fact, in the case of a particular q, the proposed generalized uniform recursive tree can
also be obtained from the URT by deleting all its edges with probability q, which is exactly
the bond percolation problem on the URT. It is known to us all, the bond percolation model
can be mapped to a dynamic susceptible-infected-removed (SIR) model [15, 16] for disease
propagation, and a percolation transition in the bond percolation represents the onset of an
epidemic [17, 18]. Thus, our model could stimulate and find some obvious implications
for disease propagation and some other related researches in future. Finally, it should be
mentioned that other models with loops are known to be locally tree-like near the percolation
point observed upon the bond percolation, hence the results found here may also be relevant
to such studies [26].
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